

CITTÀ DI MONCALIERI

Area Territorio e Infrastrutture – Settore Gestione Infrastrutture Tel. 011/6401.207 - fax 011/6401.334

SPERIMENTAZIONE DI INTERVENTI DI SOCIAL HOUSING TRAMITE CASI PILOTA.

RISTRUTTURAZIONE VIA SALUZZO N. 18 - MONCALIERI (TO)

PROGETTO DEFINITIVO/ESECUTIVO

RELAZIONE TECNICA SECONDO ART. 28 L.10/91 E S.M.I.

Moncalieri, MAGGIO 2010

IL RESPONSABILE DEL PROCEDIMENTO

ing. Matteo TRICARICO

IL PROGETTISTA

I COLLABORATORI

ing. Matteo TRICARICO

Geom. Dario VIOLA Geom. Girolamo FICI P.I. Domenico USAI Arch. Lucia F. SPRIANO

INDICE

INFORMAZIONI GENERALI	5
DATI GENERALI E CLIMATICI DELLA LOCALITA' E TECNICO COSTRUTTIVI	
DELL'EDIFICIO	5
DELL EDITICIO	
DATI TECNICI E COSTRUTTIVI DELL'EDIFICIO E DELLE RELATIVE STRUTTURE	6
DATI RELATIVI AGLI IMPIANTI TERMICI	8
- Sistemi di regolazione erogazione a pannelli	9
- Sistemi di regolazione erogazione a terminali	
PRINCIPALI RISULTATI DEI CALCOLI	13
PRINCIPALI RISULTATI DEI CALCOLI DELLE ZONE	15
- Zona "Locale polifunzionale"	15
- Zona "Corridoio e Scale"	
- Zona "Locale lavanderia"	15
- Zona "Alloggio n.1"	15
- Zona "Alloggio n.2"	16
- Zona "Alloggio n.3"	
- Zona "Alloggio n.4"	
- Zona "Alloggio n.5"	
- Zona "Alloggio n.6"	
- Zona "Alloggio n.7"	
- Zona "Alloggio n.8"	17
CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI E	
FINESTRATI DEL MANUEATTO EDILIZIO	18

INFORMAZIONI GENERALI

- Comune di MONCALIERI.
- Provincia di TORINO.
- Progetto per la SPERIMENTAZIONE DI INTERVENTI DI SOCIAL HOUSING TRAMITE CASI PILOTA - RISTRUTTURAZIONE FABBRICATO COMUNALE
- Sito: VIA SALUZZO n. 18 MONCALIERI (TO).
- Intervento relativo a: "Edificio di nuova costruzione con relativo impianto".
- L'edificio è costituito in totale da n. 8 unità immobiliari ed un locale polifunzionale.
- Committente: COMUNE DI MONCALIERI (TO).
- Progettista dell'isolamento termico dell'edificio: ing. Matteo TRICARICO.
- Direttore dei Lavori dell'isolamento termico dell'edificio: ing. Matteo TRICARICO.
- Progettista degli impianti termici dell'edificio: ing. Matteo TRICARICO.
- Direttore dei Lavori degli impianti termici dell'edificio: ing. Matteo TRICARICO.
- L'edificio rientra tra quelli di proprietà pubblica o adibiti ad uso pubblico, ai fini dell'art. 5, comma 15, del D.P.R. 412 del 26/08/93 e successive modifiche ed integrazioni (utilizzo delle fonti rinnovabili di energia) e dell'Allegato I, comma 14 del decreto legislativo.
- Sono allegati alla presente relazione, gli elaborati grafici: piante prospetti e sezioni dove è indicato l'orientamento.

DATI GENERALI E CLIMATICI DELLA LOCALITA' E TECNICO COSTRUTTIVI DELL'EDIFICIO

- I gradi giorno del Comune dell'intervento sono 2553 GG, determinati in base al D.P.R. 412 del 26/08/93 e successive modifiche ed integrazioni.
- La Zona climatica in cui ricade l'opera in oggetto è "E", pertanto il periodo di riscaldamento previsto per legge è di giorni 183 e precisamente dal 15/10 al 15/4.
- La temperatura minima di progetto dell'aria esterna secondo norma UNI 5364 e successivi aggiornamenti è di -8. 00 °C.
- Le temperature medie mensili determinate in base alla norma UNI 10349 sono le seguenti:

Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
0.50	3.30	8.30	12.80	16.80	21.20	23.40	22.70	18.90	12.70	6.90	2.10

• Le irradiazioni medie mensili (espresse in MJ/giorno) relative al periodo di riscaldamento determinate in base alla norma UNI 10349 sono le seguenti:

	N	NE	Е	SE	S	SW	W	NW	Oriz.
Gen	1.70	1.80	3.70	7.00	9.00	7.00	3.70	1.80	5.10
Feb	2.50	3.00	5.50	8.60	10.50	8.60	5.50	3.00	7.80
Mar	3.90	4.80	7.50	10.10	11.40	10.10	7.50	4.80	12.10
Apr	5.40	7.30	10.00	11.40	11.20	11.40	10.00	7.30	16.70
Mag	7.20	9.20	11.40	11.30	10.00	11.30	11.40	9.20	19.20
Giu	8.10	10.20	12.10	11.50	9.80	11.50	12.10	10.20	21.10
Lug	8.20	11.00	13.60	12.90	10.90	12.90	13.60	11.00	23.10
Ago	5.90	8.00	10.60	11.50	10.90	11.50	10.60	8.00	18.20
Set	4.40	5.80	8.40	10.40	10.90	10.40	8.40	5.80	13.30
Ott	2.90	3.50	6.20	9.40	11.20	9.40	6.20	3.50	9.20
Nov	1.90	2.00	3.80	6.80	8.70	6.80	3.80	2.00	5.50
Dic	1.50	1.60	3.60	7.30	9.50	7.30	3.60	1.60	4.70

 Le Umidità Relative medie mensili esterne determinate in base alla norma UNI 10349 sono le sequenti:

Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
82.80	79.20	63.70	63.80	68.20	69.30	64.90	69.90	72.40	80.60	86.20	85.60

• La velocità media del vento è 1.20 m/s.

DATI TECNICI E COSTRUTTIVI DELL'EDIFICIO E DELLE RELATIVE STRUTTURE

pannelli radianti:

- Il volume (V) delle parti di edificio abitabili o agibili climatizzate è di 1 167.58 m³, al lordo delle strutture che li delimitano.
- La superficie (S) esterna che delimita il suddetto volume è di 665.17 m².
- Rapporto S/V è pari a 0.57 m⁻¹.
- La superficie utile dell'edificio (Su) è pari a 276.14 m².

Il presente "Edificio Oggetto di Calcolo" è composto da n. 8 Zone con le seguenti caratteristiche:

Zona "Alloggio n.1"

- Classificazione: E1 (1).
- Volume netto 85.10 m³.
- Superficie netta 31.52 m².
- Valore di progetto della Temperatura interna 20.00 °C.
- Valore di progetto dell'Umidità relativa Interna 50 %.

Zona "Alloggio n.2"

- Classificazione: E1 (1).
- Volume netto 91.14 m³.
- Superficie netta 33.75 m².
- Valore di progetto della Temperatura interna 20.00 °C.
- Valore di progetto dell'Umidità relativa Interna 50 %.

Zona "Alloggio n.3"

- Classificazione: E1 (1).
- Volume netto 81.74 m³.
- Superficie netta 30.28 m².
- Valore di progetto della Temperatura interna 20.00 °C.
- Valore di progetto dell'Umidità relativa Interna 50 %.

Zona "Alloggio n.4"

- Classificazione: E1 (1).
- Volume netto 94.85 m³.
- Superficie netta 35.13 m².
- Valore di progetto della Temperatura interna 20.00 °C.
- Valore di progetto dell'Umidità relativa Interna 50 %.

Zona "Alloggio n.5"

- Classificazione: E1 (1).
- Volume netto 89.58 m³.
- Superficie netta 33.18 m².
- Valore di progetto della Temperatura interna 20.00 °C.
- Valore di progetto dell'Umidità relativa Interna 50 %.

Zona "Alloggio n.6"

- Classificazione: E1 (1).
- Volume netto 88.65 m³.
- Superficie netta 32.83 m².
- Valore di progetto della Temperatura interna 20.00 °C.
- Valore di progetto dell'Umidità relativa Interna 50 %.

Zona "Alloggio n.7"

- Classificazione: E1 (1).
- Volume netto 116.14 m³.
- Superficie netta 43.01 m².
- Valore di progetto della Temperatura interna 20.00 °C.
- Valore di progetto dell'Umidità relativa Interna 50 %.

Zona "Alloggio n.8"

- Classificazione: E1 (1).
- Volume netto 98.38 m³.
- Superficie netta 36.44 m².
- Valore di progetto della Temperatura interna 20.00 °C.
- Valore di progetto dell'Umidità relativa Interna 50 %.

terminali:

- Il volume (V) delle parti di edificio abitabili o agibili climatizzate è di 567.94 m³, al lordo delle strutture che li delimitano.
- La superficie (S) esterna che delimita il suddetto volume è di 193.89 m².
- Rapporto S/V è pari a 0.34 m⁻¹.
- La superficie utile dell'edificio (Su) è pari a 135.95 m².

Il presente "Edificio Oggetto di Calcolo" è composto da n. 3 Zone con le seguenti caratteristiche:

Zona "Locale polifunzionale"

- Classificazione: E1 (1).
- Volume netto 122.42 m³.
- Superficie netta 45.34 m².
- Valore di progetto della Temperatura interna 20.00 °C.
- Valore di progetto dell'Umidità relativa Interna 50 %.

Zona "Corridoio e Scale"

- Classificazione: E1 (1).
- Volume netto 85.63 m³.
- Superficie netta 31.72 m².
- Valore di progetto della Temperatura interna 20.00 °C.
- Valore di progetto dell'Umidità relativa Interna 50 %.

Zona "Locale lavanderia"

- Classificazione: E1 (1).
- Volume netto 159.01 m³.
- Superficie netta 58.89 m².
- Valore di progetto della Temperatura interna 20.00 °C.
- Valore di progetto dell'Umidità relativa Interna 50 %.

DATI RELATIVI AGLI IMPIANTI TERMICI

Descrizione impianto

- tipologia: IMPIANTO TERMICO CENTRALIZZATO PER IL RISCALDAMENTO E LA PRODUZIONE DI ACS A SERVIZO DELL'EDIFICIO;
- tipo di conduzione prevista: CONTINUA CON ATTENUAZIONE NOTTURNA;
- sistema di generazione: GENERATORE DI CALORE CENTRALIZZATO AD ACQUA CALDA ALIMENTATO A METANO;
- sistema di termoregolazione: CENTRALINA AMBIENTE DI TERMOREGOLAZIONE PER OGNI SINGOLO ALLOGGIO;
- sistema di termoregolazione: VALVOLE TERMOSTATICHE DA RADIATORE PARTI COMUNI;
- sistema di contabilizzazione dell'energia termica: CONTATORE DI CALORIE DIRETTO, CONFORME ALLA DIRETTIVA 2004/22/CE;
- sistema di distribuzione del vettore termico: COLLETTORI COMPLANARI;

- sistema di produzione dell'acqua calda sanitaria: PRODUZIONE CENTRALIZZATA IN LOCALE TECNOLOGICO CON AUSILIO DI PANNELLI SOLARI;
- sistema di distribuzione dell'acqua calda sanitaria: DORSALE GENERALE PER ALIMENTAZIONE ALLOGGI, CON CONTAORE DI CONTABILIZZAZIONE CONSUMI;

Specifiche del generatore di energia

- Tipologia del generatore: caldaia modulare a condensazione;
- Fluido termovettore: acqua;
- Valore nominale della potenza termica utile: 48.00 kW;
- Combustibile utilizzato: Metano (PCI = 34.54 MJ/Nm³);
- Rendimento termico utile al 100 % della potenza nominale: valore di progetto 96.60%, valore LIMITE 92.68%;
- Rendimento termico utile al 30 % della potenza nominale: valore di progetto 106.90%, valore LIMITE 98.68%.

Specifiche relative ai sistemi di regolazione dell'impianto termico:

- Centralina climatica: CENTRALINO CON SONDE DI RILIEVO TEMPERATURA ESTERNA ED INTERNA; (i numeri dei livelli di programmazione della temperatura nelle 24 h sono: 2);
- Organi di attuazione: VALVOLE MISCELATRICE A 3 VIE.

Condotti di evacuazione dei prodotti di combustione

Descrizione e caratteristiche principali: ATTACCO TUBO FUMI min. Ø80MM.

Sistemi di trattamento dell'acqua:

Tipo di trattamento: SE NECESSARIO, SI UTILIZZERA' L'ADDOLCITORE ACQUE.

Specifiche dell'isolamento termico della rete di distribuzione

GUAINA TIPO ARMAFLEX CON SPESSORE CONFORME AL D.P.R. 412/93 E S.M.I.

Specifiche della/e pompa/e di circolazione

POMPA GEMELLARE A VELOCITA' E PORTATA MODULARE.

- Sistemi di regolazione erogazione a pannelli

Zona "Alloggio n.1"

Regolatori climatici

- Funzionamento continuo;
- Sistema di regolazione:
 - Tipo di regolazione: Climatica più ambiente con regolatore;
 - Caratteristiche della regolazione: On Off
- Numero di apparecchi installati: 1;
- Descrizione sintetica delle funzioni: Cronotermostato ambiente con alimentazione a batteria. Il cronotermostato aziona la valvola di zona. Orologio programmatore settimanale.:
- Numero dei livelli di programmazione nelle 24 ore: 2;
- Tipo terminale: Pannelli isolati annegati a pavimento;
- Apporti Interni 4.77 W/m² (dati da prospetto 12 UNI/TS 11300-1).;

Zona "Alloggio n.2"

Regolatori climatici

- Funzionamento continuo;
- Sistema di regolazione:
 - Tipo di regolazione: Climatica più ambiente con regolatore;
 - Caratteristiche della regolazione: On Off
- Numero di apparecchi installati: 1;
- Descrizione sintetica delle funzioni: Cronotermostato ambiente con alimentazione a batteria. Il cronotermostato aziona la valvola di zona. Orologio programmatore settimanale.:
- Numero dei livelli di programmazione nelle 24 ore: 2;
- Tipo terminale: Pannelli isolati annegati a pavimento;
- Apporti Interni 4.73 W/m² (dati da prospetto 12 UNI/TS 11300-1).;

Zona "Alloggio n.3"

Regolatori climatici

- Funzionamento continuo;
- Sistema di regolazione:
 - Tipo di regolazione: Climatica più ambiente con regolatore;
 - Caratteristiche della regolazione: On Off
- Numero di apparecchi installati: 1;
- Descrizione sintetica delle funzioni: Cronotermostato ambiente con alimentazione a batteria. Il cronotermostato aziona la valvola di zona. Orologio programmatore settimanale.:
- Numero dei livelli di programmazione nelle 24 ore: 2;
- Tipo terminale: Pannelli isolati annegati a pavimento;
- Apporti Interni 4.80 W/m² (dati da prospetto 12 UNI/TS 11300-1).;

Zona "Alloggio n.4"

Regolatori climatici

- Funzionamento continuo;
- Sistema di regolazione:
 - Tipo di regolazione: Climatica più ambiente con regolatore;
 - Caratteristiche della regolazione: On Off
- Numero di apparecchi installati: 1;
- Descrizione sintetica delle funzioni: Cronotermostato ambiente con alimentazione a batteria. Il cronotermostato aziona la valvola di zona. Orologio programmatore settimanale.:
- Numero dei livelli di programmazione nelle 24 ore: 2;
- Tipo terminale: Pannelli isolati annegati a pavimento;
- Apporti Interni 4.70 W/m² (dati da prospetto 12 UNI/TS 11300-1).;

Zona "Alloggio n.5"

Regolatori climatici

- Funzionamento continuo;
- Sistema di regolazione:
 - Tipo di regolazione: Climatica più ambiente con regolatore;
 - Caratteristiche della regolazione: On Off
- Numero di apparecchi installati: 1;

- Descrizione sintetica delle funzioni: Cronotermostato ambiente con alimentazione a batteria. Il cronotermostato aziona la valvola di zona. Orologio programmatore settimanale.;
- Numero dei livelli di programmazione nelle 24 ore: 2;
- Tipo terminale: Pannelli isolati annegati a pavimento;
- Apporti Interni 4.73 W/m² (dati da prospetto 12 UNI/TS 11300-1).;

Zona "Alloggio n.6"

Regolatori climatici

- Funzionamento continuo;
- Sistema di regolazione:
 - Tipo di regolazione: Climatica più ambiente con regolatore;
 - Caratteristiche della regolazione: On Off
- Numero di apparecchi installati: 1;
- Descrizione sintetica delle funzioni: Cronotermostato ambiente con alimentazione a batteria. Il cronotermostato aziona la valvola di zona. Orologio programmatore settimanale.;
- Numero dei livelli di programmazione nelle 24 ore: 2;
- Tipo terminale: Pannelli isolati annegati a pavimento;
- Apporti Interni 4.75 W/m² (dati da prospetto 12 UNI/TS 11300-1).;

Zona "Alloggio n.7"

Regolatori climatici

- Funzionamento continuo;
- Sistema di regolazione:
 - Tipo di regolazione: Climatica più ambiente con regolatore;
 - Caratteristiche della regolazione: On Off
- Numero di apparecchi installati: 1;
- Descrizione sintetica delle funzioni: Cronotermostato ambiente con alimentazione a batteria. Il cronotermostato aziona la valvola di zona. Orologio programmatore settimanale.:
- Numero dei livelli di programmazione nelle 24 ore: 2;
- Tipo terminale: Pannelli isolati annegati a pavimento;
- Apporti Interni 4.59 W/m² (dati da prospetto 12 UNI/TS 11300-1).;

Zona "Alloggio n.8"

Regolatori climatici

- Funzionamento continuo;
- Sistema di regolazione:
 - Tipo di regolazione: Climatica più ambiente con regolatore;
 - Caratteristiche della regolazione: On Off
- Numero di apparecchi installati: 1;
- Descrizione sintetica delle funzioni: Cronotermostato ambiente con alimentazione a batteria. Il cronotermostato aziona la valvola di zona. Orologio programmatore settimanale.;
- Numero dei livelli di programmazione nelle 24 ore: 2;
- Tipo terminale: Pannelli isolati annegati a pavimento:
- Apporti Interni 4.69 W/m² (dati da prospetto 12 UNI/TS 11300-1).;

- Sistemi di regolazione erogazione a terminali

Zona "Locale polifunzionale" Regolatori climatici

- Funzionamento continuo;
- Sistema di regolazione:
 - Tipo di regolazione: Valvola termostatica
 - Caratteristiche della regolazione: 5 livelli
- Numero di apparecchi installati: 1;
- Tipo terminale: Radiatore in ghisa;
- Apporti Interni 4.59 W/m² (dati da prospetto 12 UNI/TS 11300-1).;

Zona "Corridoio e Scale"

Regolatori climatici

- Funzionamento continuo;
- Sistema di regolazione:
 - Tipo di regolazione: Valvola termostatica
 - Caratteristiche della regolazione: 5 livelli
- Numero di apparecchi installati: 1;
- Tipo terminale: Radiatore in ghisa;
- Apporti Interni 4.76 W/m² (dati da prospetto 12 UNI/TS 11300-1).;

Zona "Locale lavanderia"

Regolatori climatici

- Funzionamento continuo;
- Sistema di regolazione:
 - Tipo di regolazione: Valvola termostatica
 - Caratteristiche della regolazione: 5 livelli
- Numero di apparecchi installati: 1;
- Tipo terminale: Radiatore in ghisa;
- Apporti Interni 4.36 W/m² (dati da prospetto 12 UNI/TS 11300-1).;

Alla presente relazione, di ciascun piano dell'edificio, con orientamento e indicazione d'uso prevalente dei singoli locali, sono allegate le piante architettoniche ed impiantistiche inerenti l'impianto in oggetto. All'interno delle tavole impiantistiche, sono specificati gli schemi funzionali contenenti gli elementi di cui all'analoga voce del paragrafo"Dati relativi agli impianti".

Per quanto riguarda lo schema funzionale dell'impianto con dimensionamento delle reti di distribuzione dei fluidi termovettori e delle apparecchiature e con evidenziazione dei dispositivi di regolazione e contabilizzazione, nonché tabella riassuntiva delle apparecchiature con le loro caratteristiche funzionali e di tutti i componenti rilevanti ai fini energetici con i loro dati descrittivi e prestazionali, si rimanda agli elaborati grafici allegati alla presente relazione.

PRINCIPALI RISULTATI DEI CALCOLI

I principali risultati dei calcoli della costruzione oggetto dell'intervento sono riportati di seguito dettagliatamente:

Involucro edilizio e ricambi d'aria

Nelle schede in allegato alla presente relazione, sono riportate le caratteristiche di tutte le strutture relative all'intervento oggetto della presente verifica, corredate dai confronti con i relativi valori limite prescritti dalla normativa vigente. In particolare, sono fornite:

- Le caratteristiche termiche, igrometriche e di massa superficiale dei componenti opachi dell'involucro edilizio;
- Le caratteristiche termiche dei componenti finestrati dell'involucro edilizio;
- Le caratteristiche dei ponti termici presenti;
- Le caratteristiche termiche dei componenti opachi divisori tra edifici o unità immobiliari confinanti.

Per i dati relativi ai ricambi d'aria, si rimanda ai risultati di calcolo delle Zone.

Calcolo relativi all'EOdC "Social Housing pannelli", oggetto del calcolo:

Valore dei Rendimenti medi stagionali di progetto

Rendimento Globale
 Valore di progetto
 Valore LIMITE
 (EtaGh)
 83.35%;
 70.04%;

• Rendimento di Produzione (**EtaPh**): 102.60%;

Rendimento di Emissione (EtaEh): vedi i valori riportati per le singole ZONE;
 Rendimento di Regolazione (EtaRh): vedi i valori riportati per le singole ZONE;

Rendimento di Distribuzione (EtaDh):

•	7114111101110	ar Biotinoa	(.					
		Ott	Nov	Dic	Gen	Feb	Mar	Apr
	etaDh	96.82	96.82	96.82	96.82	96.82	96.82	96.82
	etaDh = F	Rendimento	Distribuzi	one espres	so in perce	entuale.		

Indice di prestazione energetica per la climatizzazione invernale (EPi)

- Il calcolo è stato eseguito secondo quanto prescritto nel D.Lgs. 192/2005 (in particolare negli Allegati C, E, ed I) come modificato dal D.Lgs. 311/2006 e dal D.Lgs. 115/2008, e secondo le più recenti norme tecniche vigenti in materia (le cui principali sono: UNI/TS 11300-1, UNI/TS 11300-2, UNI EN ISO 13790; UNI EN ISO 6946, UNI EN ISO 13789, UNI EN ISO 10077, UNI EN ISO 14683, UNI EN ISO 13370, UNI 8852, UNI 10339, UNI EN ISO 13788, UNI EN ISO 13786, UNI 10349).
- Valore di progetto (EPi): 44.84 kWh/m²anno (EPi_Limite): 72.99 kWh/m²anno
- Fabbisogno di combustibile: 1 149.42 Nm³
 - 1. Fabbisogno di energia elettrica da rete: 610.98 kWh
 - 2. Fabbisogno di energia elettrica da produzione locale: 0.60 kWh

Indice di prestazione energetica normalizzato per la climatizzazione invernale

Valore di progetto: 14.96 [kJ/m³GG]

Indice di prestazione energetica per la produzione di acqua calda sanitaria

3. Tipo di combustibile: Metano

4. Fabbisogno di combustibile: 676.57 Nm³

5. Fabbisogno di energia elettrica da rete: 901.27 kWh

Fabbisogno di energia elettrica da produzione locale:0.60 kWh

Calcolo relativi all'EOdC "Social Housing terminali", oggetto del calcolo:

Valore dei Rendimenti medi stagionali di progetto

6.

Rendimento GlobaleValore di progettoValore LIMITE(EtaGh)78.62%;70.04%;

• Rendimento di Produzione (**EtaPh**): 100.64%;

Rendimento di Emissione (EtaEh): vedi i valori riportati per le singole ZONE;
 Rendimento di Regolazione (EtaRh): vedi i valori riportati per le singole ZONE;

Rendimento di Distribuzione (EtaDh):

	Ott	Nov	Dic	Gen	Feb	Mar	Apr
etaDh	95.50	95.50	95.50	95.50	95.50	95.50	95.50
etaDh = F	Rendimento	Distribuzi	one espres	so in perce	entuale.		

Indice di prestazione energetica per la climatizzazione invernale (EPi)

II calcolo è stato eseguito secondo quanto prescritto nel D.Lgs. 192/2005 (in particolare negli Allegati C, E, ed I) come modificato dal D.Lgs. 311/2006 e dal D.Lgs. 115/2008, e secondo le più recenti norme tecniche vigenti in materia (le cui principali sono: UNI/TS 11300-1, UNI/TS 11300-2, UNI EN ISO 13790; UNI EN ISO 6946, UNI EN ISO 13789, UNI EN ISO 10077, UNI EN ISO 14683, UNI EN ISO 13370, UNI 8852, UNI 10339, UNI EN ISO 13788, UNI EN ISO 13786, UNI 10349)

• Valore di progetto (EPi): 41.98 kWh/m²anno (EPi_Limite): 52.89 kWh/m²anno

Fabbisogno di combustibile: 506.56 Nm³

7. Fabbisogno di energia elettrica da rete: 381.62 kWh

8. Fabbisogno di energia elettrica da produzione locale: 0.60 kWh

Indice di prestazione energetica normalizzato per la climatizzazione invernale

Valore di progetto: 14.17 [kJ/m³GG]

Indice di prestazione energetica per la produzione di acqua calda sanitaria

9. Tipo di combustibile: Metano

10. Fabbisogno di combustibile: 157.20 Nm³

11. Fabbisogno di energia elettrica da rete: 565.87 kWh

12. Fabbisogno di energia elettrica da produzione locale:0.40 kWh

Impianti solari termici per la produzione di acqua calda sanitaria

60% DI COPERTURA FABBISOGNO EDIFICIO.

Valore di Energia netta per il riscaldamento edificio: 35,93 kWh/m² a
Valore Limite Energia netta per il riscaldamento edificio: 61,32 kWh/m² a
Valore di Energia primaria per il riscaldamento edificio: 43,29 kWh/m² a
Valore limite 2008 Energia primaria per il riscaldamento edificio: 48,57 kWh/m² a
Valore limite 2010 Energia primaria per il riscaldamento edificio: 44,01 kWh/m² a

PRINCIPALI RISULTATI DEI CALCOLI DELLE ZONE

- Zona "Locale polifunzionale"

Ventilazione:

• Naturale - Numeri di ricambi d'aria [1/h] : 0.30

• Meccanica: Assente

Valore dei Rendimenti stagionali di progetto:

• Rendimento di Emissione (EtaEh): 95.00%.

Rendimento di Regolazione (EtaRh):

	Ott	Nov	Dic	Gen	Feb	Mar	Apr		
EtaRh	97.00	97.00	97.00	97.00	97.00	97.00	97.00		
EtaRh = R	EtaRh = Rendimento Regolazione espresso in percentuale.								

- Zona "Corridoio e Scale"

Ventilazione:

Naturale - Numeri di ricambi d'aria [1/h] : 0.30

Meccanica: Assente

Valore dei Rendimenti stagionali di progetto:

• Rendimento di Emissione (EtaEh): 96.00%.

• Rendimento di Regolazione (EtaRh):

	Ott	Nov	Dic	Gen	Feb	Mar	Apr
EtaRh	97.00	97.00	97.00	97.00	97.00	97.00	97.00
EtaRh = R	endimento	Regolazion	e espresso	in percentu	ıale.		

- Zona "Locale lavanderia"

Ventilazione:

Naturale - Numeri di ricambi d'aria [1/h] : 0.30

Meccanica: Assente

Valore dei Rendimenti stagionali di progetto:

• Rendimento di Emissione (**EtaEh**): 95.00%.

Rendimento di Regolazione (EtaRh):

	Ott	Nov	Dic	Gen	Feb	Mar	Apr
EtaRh	97.00	97.00	97.00	97.00	97.00	97.00	97.00
EtaRh = R	endimento	Regolazion	e espresso	in percentu	iale.		

- Zona "Alloggio n.1"

Ventilazione:

Naturale - Numeri di ricambi d'aria [1/h] : 0.30

Valore dei Rendimenti stagionali di progetto:

Rendimento di Emissione (EtaEh):99.00%.

Rendimento di Regolazione (EtaRh):

	Ott	Nov	Dic	Gen	Feb	Mar	Apr
EtaRh	95.00	95.00	95.00	95.00	95.00	95.00	95.00
EtaRh = R	endimento	Regolazion	e espresso	in percentu	ıale.		

- Zona "Alloggio n.2"

Ventilazione:

Naturale - Numeri di ricambi d'aria [1/h] : 0.30

• Meccanica: Assente

Valore dei Rendimenti stagionali di progetto:

• Rendimento di Emissione (EtaEh): 99.00%.

• Rendimento di Regolazione (EtaRh):

	Ott	Nov	Dic	Gen	Feb	Mar	Apr
EtaRh	93.00	93.00	93.00	93.00	93.00	93.00	93.00
EtaRh = R	endimento	Regolazion	e espresso	in percentu	ıale.		

- Zona "Alloggio n.3"

Ventilazione:

Naturale - Numeri di ricambi d'aria [1/h] : 0.30

• Meccanica: Assente

Valore dei Rendimenti stagionali di progetto:

• Rendimento di Emissione (EtaEh): 99.00%.

• Rendimento di Regolazione (EtaRh):

	Ott	Nov	Dic	Gen	Feb	Mar	Apr								
EtaRh	93.00	93.00	93.00	93.00	93.00	93.00	93.00								
EtaRh = R	endimento	Regolazion	e espresso	in percentu	iale.	EtaRh = Rendimento Regolazione espresso in percentuale.									

- Zona "Alloggio n.4"

Ventilazione:

Naturale - Numeri di ricambi d'aria [1/h] : 0.30

Meccanica: Assente

Valore dei Rendimenti stagionali di progetto:

• Rendimento di Emissione (EtaEh): 99.00%.

• Rendimento di Regolazione (EtaRh):

	Ott	Nov	Dic	Gen	Feb	Mar	Apr
EtaRh	93.00	93.00	93.00	93.00	93.00	93.00	93.00
EtaRh = R	endimento	Regolazion	e espresso	in percentu	iale.		

- Zona "Alloggio n.5"

Ventilazione:

Naturale - Numeri di ricambi d'aria [1/h] : 0.30

Meccanica: Assente

Valore dei Rendimenti stagionali di progetto:

• Rendimento di Emissione (EtaEh): 99.00%.

Rendimento di Regolazione (EtaRh):

		(,				
	Ott	Nov	Dic	Gen	Feb	Mar	Apr
EtaRh	95.00	95.00	95.00	95.00	95.00	95.00	95.00
EtaRh = R	endimento	Regolazion	e espresso	in percentu	ıale.		

- Zona "Alloggio n.6"

Ventilazione:

Naturale - Numeri di ricambi d'aria [1/h] : 0.30

• Meccanica: Assente

Valore dei Rendimenti stagionali di progetto:

• Rendimento di Emissione (EtaEh): 99.00%.

• Rendimento di Regolazione (EtaRh):

	Ott	Nov	Dic	Gen	Feb	Mar	Apr	
EtaRh	93.00	93.00	93.00	93.00	93.00	93.00	93.00	
EtaRh = R	endimento	93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00						

- Zona "Alloggio n.7"

Ventilazione:

Naturale - Numeri di ricambi d'aria [1/h] : 0.30

• Meccanica: Assente

Valore dei Rendimenti stagionali di progetto:

• Rendimento di Emissione (EtaEh): 99.00%.

• Rendimento di Regolazione (EtaRh):

	Ott	Ott Nov		Dic Gen		Mar	Apr
EtaRh	93.00 93.00		93.00	93.00	93.00	93.00	93.00
EtaRh = R	endimento	Regolazion	e espresso	in percentu	ıale.		

- Zona "Alloggio n.8"

Ventilazione:

• Naturale - Numeri di ricambi d'aria [1/h] : 0.30

Meccanica: Assente

Valore dei Rendimenti stagionali di progetto:

• Rendimento di Emissione (EtaEh): 99.00%.

Rendimento di Regolazione (EtaRh):

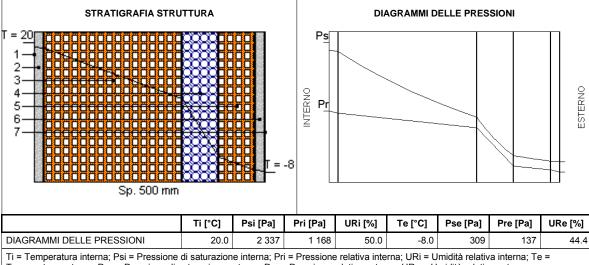
	Ott	Nov	Dic	Gen	Feb	Mar	Apr
EtaRh	93.00	93.00	93.00	93.00	93.00	93.00	93.00
EtaRh = R	endimento	Regolazion	e espresso	in percentu	iale.		

Sintesi delle strutture disperdenti dell'edificio:

Cod.	Tipologia di superficie disperdente	U [W/m²K]	Esposizione	Sup. lorda indicativa [m²]
MR.01	Parete perimetrale esterna in laterizio con cappotto isolante in fibra di legno e mattoni forati, spessore totale cm. 50	0,260	SUD-EST	60,810
WN.01	Finestra PVC (1,5x1,3) - (3 fin.)	1,739		5,850
WN.01	Finestra PVC (0,8x1,3) - (1 fin.)	1,901		1,050
MR.01	Parete perimetrale esterna in laterizio con cappotto isolante in fibra di legno e mattoni forati, spessore totale cm. 50	0,260	Nonn	35,310
MR.02	Parete perimetrale esterna in laterizio con cappotto isolante in fibra di legno e mattoni forati, spessore totale cm. 40	0,290	NORD- OVEST	30,300
WN.01	Finestra PVC (0,8x1,3) - (2 fin.)	1,901		2,100
MR.01	Parete perimetrale esterna in laterizio con cappotto isolante in fibra di legno e mattoni forati, spessore totale cm. 50	0,260		91,255
WN.01	Finestra PVC (1,5x1,3) - (6 fin.)	1,739	SUD-	11,700
WN.01	Finestra PVC (0,8x1,3) - (4 fin.)	1,901	OVEST	4,200
WN.02	Porta PVC (1,5x2,2) - (2 porte)	1,224		6,600
DO.01	Porta ingresso alloggi (3 porte)	1,686		5,805
MR.01	Parete perimetrale esterna in laterizio con cappotto isolante in fibra di legno e mattoni forati, spessore totale cm. 50	0,260		70,985
MR.02	Muro perimetrale scala	0,290	NORD-	32,200
WN.01	Finestra PVC (1,5x1,3) - (2 fin.)	1,739	EST	3,900
WN.01	Finestra PVC (0,8x1,3) - (3 fin.)	1,901		3,150
WN.02	Porta PVC (0,8x2,2) - (2 porte)	1,255		3,520
DO.01	Porta ingresso alloggi (3 porte)	1,686		5,805
MR.05	Struttura verticale in cls controterra con pannello isolante e tavella da cm 4	0,695	-	87,880
SL.03	Solaio di copertura con isolamento termico	0,281	-	217,560
SL.01	Solaio di calpestio su locale non riscaldato	0,287	-	217,560
Cod.	Tipologia di ponte termico	Ψ		Ψ1
Cou.	Tipologia di porte terrilico	[W/m K]	[m]	[W/K]
R11	Parete perimetrale/Copertura	0,05	61,8	3,09
F5	Parete solaio interpiano	0,60	61,8	37,08

CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI E FINESTRATI **DEL MANUFATTO EDILIZIO**

CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI


Codice Struttura: MR.0001

Descrizione Struttura: Parete perimetrale esterna in laterizio con cappotto isolante in fibra di legno e mattoni forati,

spessore totale cm.50

N.	DESCRIZIONE STRATO	s	lambda	С	M.S.	P<50*10 ¹²	C.S.	R	
	(dall'interno all'esterno)	[mm]	[W/mK]	[W/m²K]	[kg/m²]	[kg/msPa]	[J/kgK]	[m²K/W]	
1	Adduttanza Interna	0		7.700			0	0.130	
2	Intonaco di calce e gesso.	20	0.800	40.000	28.00	18.000	1000	0.025	
3	Mattone forato di laterizio (250*300*250) spessore 300	300		0.667	114.00	40.000	840	1.500	
4	Pannelli di fibre di legno duri	80	0.046	0.577	18.40	4.000	1700	1.732	
5	Mattone forato di laterizio (250*80*250) spessore 80	80		2.500	62.00	40.000	840	0.400	
6	Intonaco di calce e gesso.	20	0.800	40.000	28.00	18.000	1000	0.025	
7	Adduttanza Esterna	0		25.000			0	0.040	
	RESISTENZA = 3.851 m ² K/W		'			TRASMITTANZA = 0.260 W/m ² K			
	SPESSORE = 500 mm	CAPACITA	TERMICA ARE	ICA (int) = 39.70	4 kJ/m²K	K MASSA SUPERFICIALE = 194 kg/m ²			
TRA	SMITTANZA TERMICA PERIODICA = 0.03 W/m ² K	FAT	TORE DI ATTEI	NUAZIONE = 0.1	1	SFASAMENTO = 16.60 h			

s = Spessore dello strato; lambda = Conduttività termica del materiale; C = Conduttanza unitaria; M.S. = Massa Superficiale; P<50*101² = Permeabilità al vapore con umidità relativa fino al 50%; C.S. = Calore Specifico; R = Resistenza termica dei singoli strati; Resistenza Trasmittanza = Valori di resistenza e trasmittanza reali; Massa Superficiale = Valore calcolato come disposto nell'Allegato A del D.Lgs.192/05

Ti = Temperatura interna; Psi = Pressione di saturazione interna; Pri = Pressione relativa interna; Uf	Ri = Umidità relativa interna; Te =
Temperatura esterna; Pse = Pressione di saturazione esterna; Pre = Pressione relativa esterna; UR	e = Umidità relativa esterna.

VERIFICA IGROMETRICA											
gen	feb	mar	apr	mag	giu	lug	ago	set	ott	nov	dic
82.80	79.20	63.70	63.80	68.20	69.30	64.90	69.90	72.40	80.60	86.20	85.60
Tcf1 0.50 3.30 8.30 12.80 16.80 21.20 23.40 22.70 18.90 12.70 6.90 2.10									2.10		
65.00	65.00	65.00	65.00	65.00	65.00	65.00	65.00	65.00	65.00	65.00	65.00
20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00
terstiziale	VEF	RIFICATA	La stru	ttura non è	soggetta a	fenomeni d	di condensa	interstizia	le.		
Verifica Superficiale VERIFICATA Valore massimo ammissibile di U = 0.4758 (mese critico: Gennaio).											
	82.80 0.50 65.00 20.00 aterstiziale	82.80 79.20 0.50 3.30 65.00 65.00 20.00 20.00 sterstiziale VEF	82.80 79.20 63.70 0.50 3.30 8.30 65.00 65.00 65.00 20.00 20.00 20.00 vterstiziale VERIFICATA	gen feb mar apr 82.80 79.20 63.70 63.80 0.50 3.30 8.30 12.80 65.00 65.00 65.00 65.00 20.00 20.00 20.00 20.00 Iterstiziale VERIFICATA La structure	gen feb mar apr mag 82.80 79.20 63.70 63.80 68.20 0.50 3.30 8.30 12.80 16.80 65.00 65.00 65.00 65.00 65.00 20.00 20.00 20.00 20.00 20.00 terstiziale VERIFICATA La struttura non è	gen feb mar apr mag giu 82.80 79.20 63.70 63.80 68.20 69.30 0.50 3.30 8.30 12.80 16.80 21.20 65.00 65.00 65.00 65.00 65.00 65.00 20.00 20.00 20.00 20.00 20.00 20.00 terstiziale VERIFICATA La struttura non è soggetta a	gen feb mar apr mag giu lug 82.80 79.20 63.70 63.80 68.20 69.30 64.90 0.50 3.30 8.30 12.80 16.80 21.20 23.40 65.00 65.00 65.00 65.00 65.00 65.00 20.00 20.00 20.00 20.00 20.00 20.00 Atterstiziale VERIFICATA La struttura non è soggetta a fenomeni de soggetta a fen	gen feb mar apr mag giu lug ago 82.80 79.20 63.70 63.80 68.20 69.30 64.90 69.90 0.50 3.30 8.30 12.80 16.80 21.20 23.40 22.70 65.00 65.00 65.00 65.00 65.00 65.00 65.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 Iterstiziale VERIFICATA La struttura non è soggetta a fenomeni di condensa	gen feb mar apr mag giu lug ago set 82.80 79.20 63.70 63.80 68.20 69.30 64.90 69.90 72.40 0.50 3.30 8.30 12.80 16.80 21.20 23.40 22.70 18.90 65.00 65.00 65.00 65.00 65.00 65.00 65.00 65.00 20.00	gen feb mar apr mag giu lug ago set ott 82.80 79.20 63.70 63.80 68.20 69.30 64.90 69.90 72.40 80.60 0.50 3.30 8.30 12.80 16.80 21.20 23.40 22.70 18.90 12.70 65.00 65.00 65.00 65.00 65.00 65.00 65.00 65.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 Merstiziale VERIFICATA La struttura non è soggetta a fenomeni di condensa interstiziale.	gen feb mar apr mag giu lug ago set ott nov 82.80 79.20 63.70 63.80 68.20 69.30 64.90 69.90 72.40 80.60 86.20 0.50 3.30 8.30 12.80 16.80 21.20 23.40 22.70 18.90 12.70 6.90 65.00 65.00 65.00 65.00 65.00 65.00 65.00 65.00 65.00 65.00 65.00 65.00 20.00

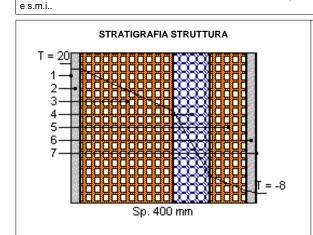
La verifica igrometrica è stata eseguita secondo UNI EN ISO 13788.

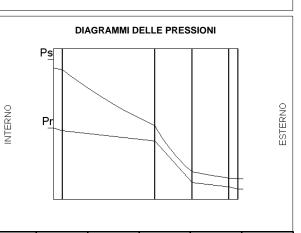
cf1 = Esterno

cf2 = Alloggio n.4

Codice Struttura:

MR.0002


Descrizione Struttura: Parete perimetrale esterna in laterizio con cappotto isolante in fibra di legno e mattoni forati,


spessore totale cm.40

N.	DESCRIZIONE STRATO	s	lambda	С	M.S.	P<50*10 ¹²	C.S.	R
	(dall'interno all'esterno)	[mm]	[W/mK]	[W/m²K]	[kg/m²]	[kg/msPa]	[J/kgK]	[m²K/W]
1	Adduttanza Interna	0		7.700			0	0.130
2	Intonaco di calce e gesso.	20	0.800	40.000	28.00	18.000	1000	0.025
3	Mattone forato di laterizio (250*200*250) spessore 200	200		0.909	90.00	40.000	840	1.100
4	Pannelli di fibre di legno duri	80	0.046	0.577	18.40	4.000	1700	1.732
5	Mattone forato di laterizio (250*80*250) spessore 80	80		2.500	62.00	40.000	840	0.400
6	Intonaco di calce e gesso.	20	0.800	40.000	28.00	18.000	1000	0.025
7 Adduttanza Esterna		0		25.000			0	0.040
	RESISTENZA = 3.451 m²K/W					TRASMIT	TANZA = 0.290	W/m²K
	SPESSORE = 400 mm	CAPACITA	TERMICA ARE	ICA (int) = 40.62	7 kJ/m²K	MASSA SUI	PERFICIALE = 1	70 kg/m²

TRASMITTANZA TERMICA PERIODICA = 0.05 W/m²K FATTORE DI ATTENUAZIONE = 0.18 SFASAMENTO = 14.54 h

s = Spessore dello strato; lambda = Conduttività termica del materiale; C = Conduttanza unitaria; M.S. = Massa Superficiale; P<50*10¹² = Permeabilità al vapore con umidità relativa fino al 50%; C.S. = Calore Specifico; R = Resistenza termica dei singoli strati; Resistenza - Trasmittanza = Valori di resistenza e trasmittanza reali; Massa Superficiale = Valore calcolato come disposto nell'Allegato A del D.Lgs.192/05

	Ti [°C]	Psi [Pa]	Pri [Pa]	URi [%]	Te [°C]	Pse [Pa]	Pre [Pa]	URe [%]
DIAGRAMMI DELLE PRESSIONI	20.0	2 337	1 168	50.0	-8.0	309	137	44.4

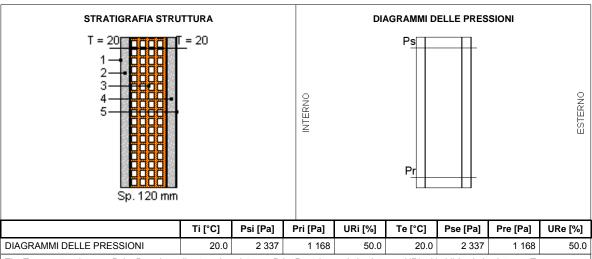
Ti = Temperatura interna; Psi = Pressione di saturazione interna; Pri = Pressione relativa interna; URi = Umidità relativa interna; Te = Temperatura esterna; Pse = Pressione di saturazione esterna; Pre = Pressione relativa esterna; URe = Umidità relativa esterna.

	VERIFICA IGROMETRICA											
	gen	feb	mar	apr	mag	giu	lug	ago	set	ott	nov	dic
URcf1	65.00	65.00	65.00	65.00	65.00	65.00	65.00	65.00	65.00	65.00	65.00	65.00
Tcf1	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00
URcf2	82.80	79.20	63.70	63.80	68.20	69.30	64.90	69.90	72.40	80.60	86.20	85.60
Tcf2	0.50	3.30	8.30	12.80	16.80	21.20	23.40	22.70	18.90	12.70	6.90	2.10
Verifica I	/erifica Interstiziale VERIFICATA La struttura non è soggetta a fenomeni di condensa interstiziale.											

Verifica Interstiziale	VERIFICATA	La struttura non è soggetta a fenomeni di condensa interstiziale.
Verifica Superficiale	VERIFICATA	Valore massimo ammissibile di U = 0.4758 (mese critico: Gennaio).

La verifica igrometrica è stata eseguita secondo UNI EN ISO 13788.

cf1 = Locale polifunzionale

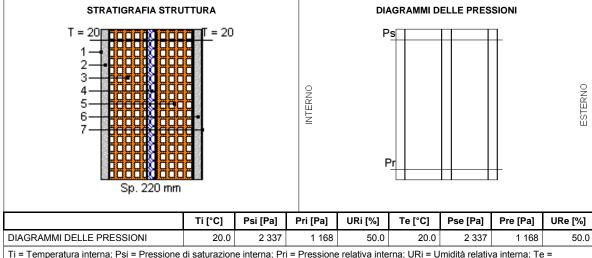

cf2 = Esterno

Codice Struttura: MR.0003

Descrizione Struttura: Parete per divisori interni realizzata con mattone singolo da 8cm.

N.	DESCRIZIONE STRATO	s	lambda	С	M.S.	P<50*10 ¹²	C.S.	R
	(dall'interno all'esterno)	[mm]	[W/mK]	[W/m ² K]	[kg/m²]	[kg/msPa]	[J/kgK]	[m²K/W]
1	Adduttanza Interna	0		7.700			0	0.130
2	Intonaco di calce e gesso.	20	0.800	40.000	28.00	18.000	1000	0.025
3	Mattone forato di laterizio (250*80*250) spessore 80	80		2.500	62.00	40.000	840	0.400
4	Intonaco di calce e gesso.	20	0.800	40.000	28.00	18.000	1000	0.025
5	Adduttanza Esterna	0		7.700			0	0.130
	RESISTENZA = 0.710 m ² K/W			•		TRASMITTANZA = 1.409 W/m ² K		
	SPESSORE = 120 mm	CAPACITA	TERMICA ARE	ICA (int) = 45.53	3 kJ/m²K	MASSA SUPERFICIALE = 62 kg/m ²		
TRA	SMITTANZA TERMICA PERIODICA = 1.15 W/m²K	FATTORE DI ATTENUAZIONE = 0.82				SFASAMENTO = 3.78 h		

s = Spessore dello strato; lambda = Conduttività termica del materiale; C = Conduttanza unitaria; M.S. = Massa Superficiale; P<50*10¹² = Permeabilità al vapore con umidità relativa fino al 50%; C.S. = Calore Specifico; R = Resistenza termica dei singoli strati; Resistenza - Trasmittanza = Valori di resistenza e trasmittanza reali; Massa Superficiale = Valore calcolato come disposto nell'Allegato A del D.Lgs.192/05 e s.m.i.


Ti = Temperatura interna; Psi = Pressione di saturazione interna; Pri = Pressione relativa interna; URi = Umidità relativa interna; Te = Temperatura esterna; Pse = Pressione di saturazione esterna; Pre = Pressione relativa esterna; URe = Umidità relativa esterna.

Codice Struttura: MR.0004

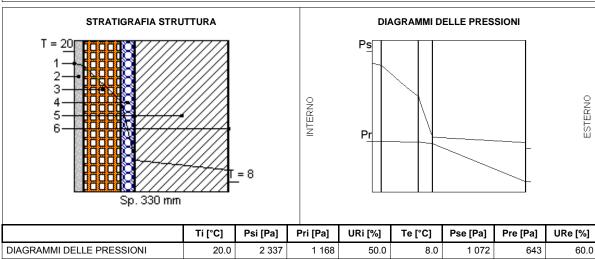
Parete divisoria singoli alloggi realizzata in doppio mattone da 8cm. con interposto isolante in fibra di **Descrizione Struttura:**

N.	DESCRIZIONE STRATO	s	lambda	С	M.S.	P<50*10 ¹²	C.S.	R
	(dall'interno all'esterno)	[mm]	[W/mK]	[W/m²K]	[kg/m²]	[kg/msPa]	[J/kgK]	[m²K/W]
1	Adduttanza Interna	0		7.700			0	0.130
2	Intonaco di calce e gesso.	20	0.800	40.000	28.00	18.000	1000	0.025
3	Mattone forato di laterizio (250*80*250) spessore 80	80		2.500	62.00	40.000	840	0.400
4	Pannelli di fibre di legno duri	20	0.046	2.310	4.60	4.000	1700	0.433
5	Mattone forato di laterizio (250*80*250) spessore 80	80		2.500	62.00	40.000	840	0.400
6	Intonaco di calce e gesso.	20	0.800	40.000	28.00	18.000	1000	0.025
7	Adduttanza Esterna	0		7.700			0	0.130
	RESISTENZA = 1.543 m ² K/W					TRASMITTANZA = 0.648 W/m²K		
	SPESSORE = 220 mm	CAPACITA' TERMICA AREICA (int) = 49.981 kJ/m ² K				MASSA SUPERFICIALE = 129 kg/m ²		
TRA	SMITTANZA TERMICA PERIODICA = 0.31 W/m²K	FAT	TORE DI ATTEI	NUAZIONE = 0.4	7	SFASAMENTO = 8.46 h		

s = Spessore dello strato; lambda = Conduttività termica del materiale; C = Conduttanza unitaria; M.S. = Massa Superficiale; P<50*10¹² = Permeabilità al vapore con umidità relativa fino al 50%; C.S. = Calore Specifico; R = Resistenza termica dei singoli strati; Resistenza - Trasmittanza = Valori di resistenza e trasmittanza reali; Massa Superficiale = Valore calcolato come disposto nell'Allegato A del D.Lgs.192/05 e s.m.i.

Ti = Temperatura interna; Psi = Pressione di saturazione interna; Pri = Pressione relativa interna; URi = Umidità relativa interna; Te = Temperatura esterna; Pse = Pressione di saturazione esterna; Pre = Pressione relativa esterna; URe = Umidità relativa esterna.

Codice Struttura:


MR.0005

Descrizione Struttura: Struttura verticale in cls controterra con pannello isolante e tavella da cm.4

N.	DESCRIZIONE STRATO	s	lambda	С	M.S.	P<50*10 ¹²	C.S.	R
	(dall'interno all'esterno)	[mm]	[W/mK]	[W/m²K]	[kg/m²]	[kg/msPa]	[J/kgK]	[m ² K/W]
1	Adduttanza Interna	0		7.700			0	0.130
2	Intonaco di calce e gesso.	20	0.800	40.000	28.00	18.000	1000	0.025
3	Mattone forato di laterizio (250*80*250) spessore 80	80		2.500	62.00	40.000	840	0.400
4	Pannelli di fibre di legno duri	30	0.046	1.540	6.90	4.000	1700	0.649
5	CLS di aggregati naturali - a struttura chiusa - pareti protette - mv.2400.	200	1.909	9.545	480.00	1.300	1000	0.105
6	Adduttanza Esterna	0		7.700			0	0.130

RESISTENZA = 1.439 m ² K/W		TRASMITTANZA = 0.695 W/m²K
SPESSORE = 330 mm	CAPACITA' TERMICA AREICA (int) = 46.461 kJ/m ² K	MASSA SUPERFICIALE = 549 kg/m ²
TRASMITTANZA TERMICA PERIODICA = 0.09 W/m²K	FATTORE DI ATTENUAZIONE = 0.13	SFASAMENTO = 11.82 h

s = Spessore dello strato; lambda = Conduttività termica del materiale; C = Conduttanza unitaria; M.S. = Massa Superficiale; P<50*10¹² = Permeabilità al vapore con umidità relativa fino al 50%; C.S. = Calore Specifico; R = Resistenza termica dei singoli strati; Resistenza - Trasmittanza = Valori di resistenza e trasmittanza reali; Massa Superficiale = Valore calcolato come disposto nell'Allegato A del D.Lgs.192/05 e s.m.i.

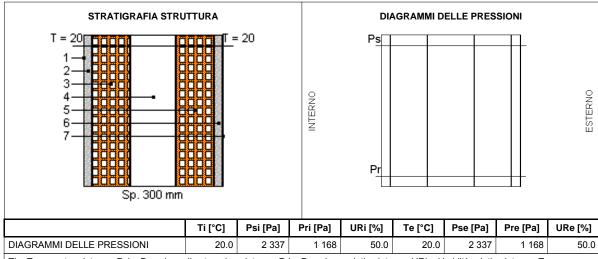
Ti = Temperatura interna; Psi = Pressione di saturazione interna; Pri = Pressione relativa interna; URi = Umidità relativa interna; Te = Temperatura esterna; Pse = Pressione di saturazione esterna; Pre = Pressione relativa esterna; URe = Umidità relativa esterna.

	VERIFICA IGROMETRICA											
	gen	feb	mar	apr	mag	giu	lug	ago	set	ott	nov	dic
URcf1	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00
Tcf1	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00
URcf2	65.00	65.00	65.00	65.00	65.00	65.00	65.00	65.00	65.00	65.00	65.00	65.00
Tcf2	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00
Verifica Interstiziale VERIFICATA			La stru	La struttura non è soggetta a fenomeni di condensa interstiziale.								

Verifica SuperficialeVERIFICATAValore massimo ammissibile di U = Sempre verificato.La verifica igrometrica è stata eseguita secondo UNI EN ISO 13788.

cf1 = Confine

cf2 = Locale lavanderia

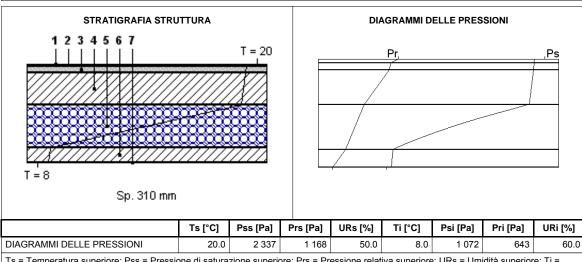

Codice Struttura: MR.0007

Descrizione Struttura: Parete per divisori interni realizzata con doppio mattone da cm.8 ed intercapedine d'aria da cm.10

N.	DESCRIZIONE STRATO	s	lambda	С	M.S.	P<50*10 ¹²	C.S.	R
	(dall'interno all'esterno)	[mm]	[W/mK]	[W/m ² K]	[kg/m²]	[kg/msPa]	[J/kgK]	[m ² K/W]
1	Adduttanza Interna	0		7.700			0	0.130
2	Intonaco di calce e gesso.	20	0.800	40.000	28.00	18.000	1000	0.025
3	Mattone forato di laterizio (250*80*250) spessore 80	80		2.500	62.00	40.000	840	0.400
4	Strato d' aria verticale - spessore tra 2,5 cm e 10 cm.	100	0.280	2.800	0.13	193.000	1008	0.357
5	Mattone forato di laterizio (250*80*250) spessore 80	80		2.500	62.00	40.000	840	0.400
6	Intonaco di calce e gesso.	20	0.800	40.000	28.00	18.000	1000	0.025
7	Adduttanza Esterna	0		7.700			0	0.130
	RESISTENZA = 1.467 m ² K/W	-				TRASMIT	TANZA = 0.682	W/m²K

RESISTENZA = 1.467 m ² K/W	·			TRASMITTANZA = 0.682 W/m ² K				
SPESSORE = 300 mm	CAPACITA	' TERMICA ARE	ICA (int) = 50.24	5 kJ/m²K	MASSA SUPERFICIALE = 124 kg/m ²			
TRASMITTANZA TERMICA PERIODICA = 0.41 W/m²K	FA'	TTORE DI ATTEI	NUAZIONE = 0.5	3	SFAS	SAMENTO = 7.52	2 h	

s = Spessore dello strato; lambda = Conduttività termica del materiale; C = Conduttanza unitaria; M.S. = Massa Superficiale; P<50*10¹² = Permeabilità al vapore con umidità relativa fino al 50%; C.S. = Calore Specifico; R = Resistenza termica dei singoli strati; Resistenza - Trasmittanza = Valori di resistenza e trasmittanza reali; Massa Superficiale = Valore calcolato come disposto nell'Allegato A del D.Lgs.192/05 e s.m.i.


Ti = Temperatura interna; Psi = Pressione di saturazione interna; Pri = Pressione relativa interna; URi = Umidità relativa interna; Te = Temperatura esterna; Pse = Pressione di saturazione esterna; Pre = Pressione relativa esterna; URe = Umidità relativa esterna.

Codice Struttura: SL.001

Descrizione Struttura: Solaio di calpestio su locale non riscaldato

N.	DESCRIZIONE STRATO	s	lambda	С	M.S.	P<50*10 ¹²	C.S.	R	
	(da superiore a inferiore)	[mm]	[W/mK]	[W/m²K]	[kg/m²]	[kg/msPa]	[J/kgK]	[m²K/W]	
1	Adduttanza Superiore	0		5.900			0	0.169	
2	Piastrelle.	10	1.000	100.000	23.00	0.940	840	0.010	
3	Malta di cemento.	20	1.400	70.000	40.00	8.500	1000	0.014	
4	Massetto ripartitore in cls con rete	100	1.304	13.041	220.00	2.857	1000	0.077	
5	Pannelli di lana di legno per isolamento termico	130	0.041	0.315	22.10	5.000	1500	3.178	
6	Massetto ripartitore in cls con rete	50	1.304	26.082	110.00	2.857	1000	0.038	
7	Adduttanza Inferiore	0		5.900			0	0.169	
	RESISTENZA = 3.657 m ² K/W	CAPACITA'	TERMICA AREI	CA (sup) = 64.70	67 kJ/m²K	TRASMITTANZA = 0.273 W/m ² K			
	SPESSORE = 310 mm	CAPACITA	TERMICA ARE	ICA (inf) = 61.54	0 kJ/m²K	MASSA SUPERFICIALE = 415 kg/m ²			
TRA	SMITTANZA TERMICA PERIODICA = 0.03 W/m²K	FAT	TORE DI ATTEI	NUAZIONE = 0.1	SFASAMENTO = -9.45 h				

s = Spessore dello strato; lambda = Conduttività termica del materiale; C = Conduttanza unitaria; M.S. = Massa Superficiale; P<50*10¹² = Permeabilità al vapore con umidità relativa fino al 50%; C.S. = Calore Specifico; R = Resistenza termica dei singoli strati; Resistenza - Trasmittanza = Valori di resistenza e trasmittanza reali; Massa Superficiale = Valore calcolato come disposto nell'Allegato A del D.Lgs.192/05 e s.m.i.

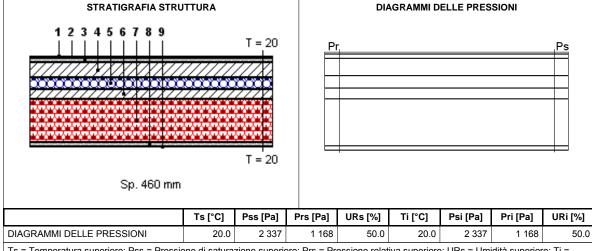
Ts = Temperatura superiore; Pss = Pressione di saturazione superiore; Prs = Pressione relativa superiore; URs = Umidità superiore; Ti = Temperatura inferiore; Psi = Pressione di saturazione inferiore; Pri = Pressione relativa inferiore; URi = Umidità inferiore.

	VERIFICA IGROMETRICA											
	gen	feb	mar	apr	mag	giu	lug	ago	set	ott	nov	dic
URcf1	65.00	65.00	65.00	65.00	65.00	65.00	65.00	65.00	65.00	65.00	65.00	65.00
Tcf1	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00
URcf2	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00
Tcf2	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00
Verifica II	Verifica Interstiziale VERIFICATA			La stru	La struttura non è soggetta a fenomeni di condensa interstiziale.							
Verifica S	/erifica Superficiale VEF		RIFICATA	Valore	massimo a	mmissibile	di U = Sem	pre verifica	ato.			

La verifica igrometrica è stata eseguita secondo UNI EN ISO 13788.

cf1 = Locale polifunzionale

cf2 = Confine


Codice Struttura: SL.002

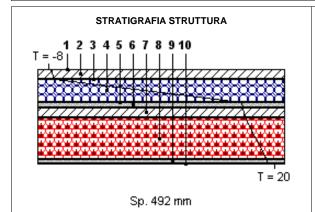
Descrizione Struttura: Solaio interpiano - su locale riscaldato

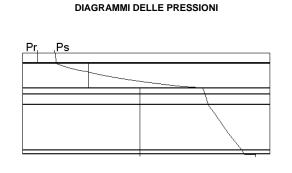
N.	DESCRIZIONE STRATO	s	lambda	С	M.S.	P<50*1012	C.S.	R	
	(da superiore a inferiore)	[mm]	[W/mK]	[W/m²K]	[kg/m²]	[kg/msPa]	[J/kgK]	[m²K/W]	
1	Adduttanza Superiore	0		10.000			0	0.100	
2	Piastrelle.	10	1.000	100.000	23.00	0.940	840	0.010	
3	Malta di cemento.	20	1.400	70.000	40.00	8.500	1000	0.014	
4	Caldana additivata per pannelli	80	0.833	10.413	144.00	6.667	1000	0.096	
5	Pannelli di lana di legno per isolamento termico	60	0.041	0.682	10.20	5.000	1500	1.467	
6	Massetto ripartitore in cls con rete	50	1.304	26.082	110.00	2.857	1000	0.038	
7	Blocco da solaio di laterizio (495*200*250) spessore 220	220		3.030	202.00	19.000	840	0.330	
8	Intonaco di calce e gesso.	20	0.800	40.000	28.00	18.000	1000	0.025	
9	Adduttanza Inferiore	0		10.000			0	0.100	
	RESISTENZA = 2.181 m ² K/W					TRASMITTANZA = 0.459 W/m ² K			
	SPESSORE = 460 mm	CAPACIT	TA' TERMICA AF	REICA = 61.047 I	kJ/m²K	MASSA SUPERFICIALE = 529 kg/m ²			

	SPESSORE = 460 mm	CAPACITA TERMICA AREICA = 61.047 kJ/m²K	MASSA SUPERFICIALE = 529 kg/m ²			
	TRASMITTANZA TERMICA PERIODICA = 0.03 W/m²K	FATTORE DI ATTENUAZIONE = 0.07	SFASAMENTO = 15.40 h			
s = Spessore dello strato; lambda = Conduttività termica del materiale; C = Conduttanza unitaria; M.S. = Massa Superficiale; P<50*10 ¹¹						

s = Spessore dello strato; lambda = Conduttività termica del materiale; C = Conduttanza unitaria; M.S. = Massa Superficiale; P<50*10¹² = Permeabilità al vapore con umidità relativa fino al 50%; C.S. = Calore Specifico; R = Resistenza termica dei singoli strati; Resistenza - Trasmittanza = Valori di resistenza e trasmittanza reali; Massa Superficiale = Valore calcolato come disposto nell'Allegato A del D.Lgs.192/05 e s.m.i..

Ts = Temperatura superiore; Pss = Pressione di saturazione superiore; Prs = Pressione relativa superiore; URs = Umidità superiore; Ti = Temperatura inferiore; Psi = Pressione di saturazione inferiore; Pri = Pressione relativa inferiore; URi = Umidità inferiore.


Codice Struttura: SL.003


Descrizione Struttura: Solaio di copertura, con isolamento termico.

N.	DESCRIZIONE STRATO	s	lambda	С	M.S.	P<50*10 ¹²	C.S.	R		
	(da superiore a inferiore)	[mm]	[W/mK]	[W/m²K]	[kg/m²]	[kg/msPa]	[J/kgK]	[m²K/W]		
1	Adduttanza Superiore	0		25.000			0	0.040		
2	Massetto ripartitore in cls con rete	50	1.304	26.082	110.00	2.857	1000	0.038		
3	Barriera al vapore	1	400.000	400 000.000	1.10	0.000	1000	0.000		
4	Pannelli di lana di legno per isolamento termico	120	0.041	0.341	20.40	5.000	1500	2.934		
5	Barriera al vapore	1	400.000	400 000.000	1.10	0.000	1000	0.000		
6	Malta di cemento.	30	1.400	46.667	60.00	8.500	1000	0.021		
7	Massetto ripartitore in cls con rete	50	1.304	26.082	110.00	2.857	1000	0.038		
8	Blocco da solaio di laterizio (495*200*250) spessore 220	220		3.030	202.00	19.000	840	0.330		
9	Intonaco di calce e gesso.	20	0.800	40.000	28.00	18.000	1000	0.025		
10	Adduttanza Inferiore	0		10.000			0	0.100		
	RESISTENZA = 3.527 m ² K/W	CAPACITA' TERMICA AREICA (sup) = 104.683 kJ/m²K				TRASMITTANZA = 0.284 W/m ² K				
	SPESSORE = 492 mm	CAPACITA	CAPACITA' TERMICA AREICA (inf) = 60.521 kJ/m²K				MASSA SUPERFICIALE = 505 kg/m ²			

RESISTENZA = 3.527 m ² K/W	CAPACITA' TERMICA AREICA (sup) = 104.683 kJ/m²K	TRASMITTANZA = 0.284 W/m ² K
SPESSORE = 492 mm	CAPACITA' TERMICA AREICA (inf) = 60.521 kJ/m ² K	MASSA SUPERFICIALE = 505 kg/m ²
TRASMITTANZA TERMICA PERIODICA = 0.02 W/m²K	FATTORE DI ATTENUAZIONE = 0.08	SFASAMENTO = -8.33 h

s = Spessore dello strato; lambda = Conduttività termica del materiale; C = Conduttanza unitaria; M.S. = Massa Superficiale; P<50*10¹² = Permeabilità al vapore con umidità relativa fino al 50%; C.S. = Calore Specifico; R = Resistenza termica dei singoli strati; Resistenza - Trasmittanza = Valori di resistenza e trasmittanza reali; Massa Superficiale = Valore calcolato come disposto nell'Allegato A del D.Lgs.192/05 e s.m.i.

	Ts [°C]	Pss [Pa]	Prs [Pa]	URs [%]	Ti [°C]	Psi [Pa]	Pri [Pa]	URi [%]
DIAGRAMMI DELLE PRESSIONI	-8.0	309	137	44.4	20.0	2 337	1 168	50.0

Ts = Temperatura superiore; Pss = Pressione di saturazione superiore; Prs = Pressione relativa superiore; URs = Umidità superiore; Ti = Temperatura inferiore; Psi = Pressione di saturazione inferiore; Pri = Pressione relativa inferiore; URi = Umidità inferiore.

	VERIFICA IGROMETRICA												
	gen	feb	mar	apr	mag	giu	lug	ago	set	ott	nov	dic	
URcf1	82.80	79.20	63.70	63.80	68.20	69.30	64.90	69.90	72.40	80.60	86.20	85.60	
Tcf1	0.50	3.30	8.30	12.80	16.80	21.20	23.40	22.70	18.90	12.70	6.90	2.10	
URcf2	65.00	65.00	65.00	65.00	65.00	65.00	65.00	65.00	65.00	65.00	65.00	65.00	
Tcf2	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	
Verifica Interstiziale VERIFICATA				La stru	La struttura non è soggetta a fenomeni di condensa interstiziale								

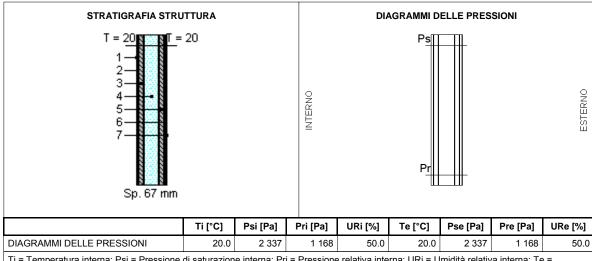
Verifica Interstiziale	VERIFICATA	La struttura non è soggetta a fenomeni di condensa interstiziale.
Verifica Superficiale	VERIFICATA	Valore massimo ammissibile di U = 0.4758 (mese critico: Gennaio).

La verifica igrometrica è stata eseguita secondo UNI EN ISO 13788.

cf1 = Esterno

cf2 = Corridoio e Scale

Codice Struttura:

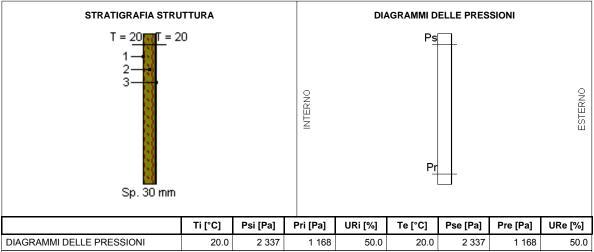

Descrizione Struttura:

Portoncino di ingresso agli appartamenti, anta battente in doppia lamiera di acciaio elettrozincato spessore 10/10 con rinforzi verticali interni di spessore 15/10, con isolamento termoacustico, pannellatura in legno e rivestimento esterno in legno o alluminio; completa di accessori, falso telaio,

serratura di sicurezza, maniglieria interna ed esterna

N.	DESCRIZIONE STRATO	s	lambda	С	M.S.	P<50*10 ¹²	C.S.	R
	(dall'interno all'esterno)	[mm]	[W/mK]	[W/m²K]	[kg/m²]	[kg/msPa]	[J/kgK]	[m ² K/W]
1	Adduttanza Interna	0		7.700			0	0.130
2	Abete (flusso perpendicolare alle fibre).	6	0.120	20.000	2.70	0.300	1700	0.050
3	Alluminio.	10	220.000	22 000.000	27.00	0.000	900	0.000
4	Strato d' aria verticale - spessore tra 1,5 cm e 2,5 cm.	35	0.150	4.286	0.05	193.000	1008	0.233
5	Alluminio.	10	220.000	22 000.000	27.00	0.000	900	0.000
6	Abete (flusso perpendicolare alle fibre).	6	0.120	20.000	2.70	0.300	1700	0.050
7	Adduttanza Esterna	0		7.700			0	0.130
RESISTENZA = 0.593 m ² K/W		TRASMITTANZA = 1.686					TANZA = 1.686	W/m²K
	CDECCODE - 67 mm	,				MACCACI	DEDEICIALE - A	-O kalm?

s = Spessore dello strato; lambda = Conduttività termica del materiale; C = Conduttanza unitaria; M.S. = Massa Superficiale; P<50*10¹² = Permeabilità al vapore con umidità relativa fino al 50%; C.S. = Calore Specifico; R = Resistenza termica dei singoli strati; Resistenza -Trasmittanza = Valori di resistenza e trasmittanza reali; Massa Superficiale = Valore calcolato come disposto nell'Allegato A del D.Lgs.192/05 e s.m.i.


Ti = Temperatura interna; Psi = Pressione di saturazione interna; Pri = Pressione relativa interna; URi = Umidità relativa interna; Te = Temperatura esterna; Pse = Pressione di saturazione esterna; Pre = Pressione relativa esterna; URe = Umidità relativa esterna.

Codice Struttura: DO.02.001

Descrizione Struttura: Porta interna di legno abete

N.	DESCRIZIONE STRATO	s	lambda	С	M.S.	P<50*10 ¹²	C.S.	R	
	(dall'interno all'esterno)	[mm]	[W/mK]	[W/m²K]	[kg/m²]	[kg/msPa]	[J/kgK]	[m²K/W]	
1	Adduttanza Interna	0		7.700			0	0.130	
2	Abete (flusso perpendicolare alle fibre).	30	0.120	4.000	13.50	0.300	1700	0.250	
3	Adduttanza Esterna	0		7.700			0	0.130	
	RESISTENZA = 0.510 m ² K/W					TRASMIT	TANZA = 1.962	W/m²K	
	SPESSORE = 30 mm					MASSA SUPERFICIALE = 14 kg/m²			

s = Spessore dello strato; lambda = Conduttività termica del materiale; C = Conduttanza unitaria; M.S. = Massa Superficiale; P<50*10¹² = Permeabilità al vapore con umidità relativa fino al 50%; C.S. = Calore Specifico; R = Resistenza termica dei singoli strati; Resistenza - Trasmittanza = Valori di resistenza e trasmittanza reali; Massa Superficiale = Valore calcolato come disposto nell'Allegato A del D.Lgs.192/05 e s.m.i..

Ti = Temperatura interna; Psi = Pressione di saturazione interna; Pri = Pressione relativa interna; URi = Umidità relativa interna; Te = Temperatura esterna; Pse = Pressione di saturazione esterna; Pre = Pressione relativa esterna; URe = Umidità relativa esterna.

Codice Struttura: WN.000

Descrizione Struttura: Finestra con telaio singolo in pvc a due ante, e vetrocamera con gas argon ad una intercapedine.

Dimensioni: L = 0.80 m; H = 1.30 m

SERRAMENTO SINGOLO										
DESCRIZIONE	Ag	Af	Lg	Ug	Uf	kl	Uw	Fg		
	[m²]	[m²]	[m]	[W/m ² K]	[W/m ² K]	[W/mK]	[W/m ² K]	[-]		
INFISSO	0.550	0.490	5.400	1.401	1.800	0.060	1.901	0.67		

Fonte - Uf: da Normativa; Ug: da Normativa

COEFFICIENTE RIDUZIONE AREA TELAIO	0.4712	
RESISTENZA UNITARIA SUPERFICIALE INTERNA	0.130	m²K/W
RESISTENZA UNITARIA SUPERFICIALE ESTERNA	0.040	m²K/W
CONDUTTANZA UNITARIA SUPERFICIALE INTERNA	7.700	W/m²K
CONDUTTANZA UNITARIA SUPERFICIALE ESTERNA	25.000	W/m²K
RESISTENZA TERMICA TOTALE	0.526	m²K/W
TRASMITTANZA TOTALE	1.901	W/m²K
TRASMITTANZA VETRO TOTALE	1.401	W/m²K

Codice Struttura: WN.000

Descrizione Struttura: Finestra con telaio singolo in pvc a due ante, e vetrocamera con gas argon ad una intercapedine.

Dimensioni: L = 1.50 m; H = 1.30 m

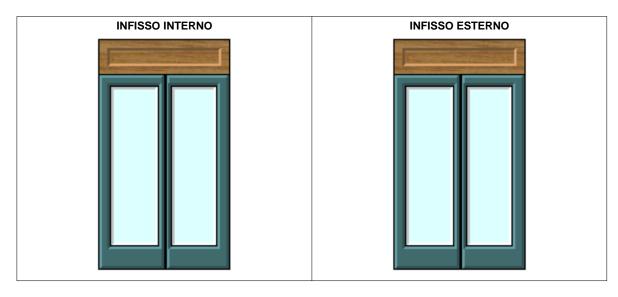
SERRAMENTO SINGOLO										
DESCRIZIONE	Ag	Af	Lg	Ug	Uf	kl	Uw	Fg		
	[m²]	[m²]	[m]	[W/m ² K]	[W/m ² K]	[W/mK]	[W/m ² K]	[-]		
INFISSO	1.320	0.630	6.800	1.401	1.800	0.060	1.739	0.67		

Fonte - Uf: da Normativa; Ug: da Normativa

COEFFICIENTE RIDUZIONE AREA TELAIO	0.3231	
RESISTENZA UNITARIA SUPERFICIALE INTERNA	0.130	m²K/W
RESISTENZA UNITARIA SUPERFICIALE ESTERNA	0.040	m²K/W
CONDUTTANZA UNITARIA SUPERFICIALE INTERNA	7.700	W/m²K
CONDUTTANZA UNITARIA SUPERFICIALE ESTERNA	25.000	W/m²K
RESISTENZA TERMICA TOTALE	0.575	m²K/W
TRASMITTANZA TOTALE	1.739	W/m²K
TRASMITTANZA VETRO TOTALE	1.401	W/m²K

Codice Struttura: WN.0002

Descrizione Struttura: Porta-finestra con telaio singolo in pvc a due ante, e vetrocamera con gas argon ad una


intercapedine.

Dimensioni: L = 0.80 m; H = 2.20 m

SERRAMENTO DOPPIO O COMBINATO										
DESCRIZIONE	Ag	Af	Lg	Ug	Uf	kl	Uw	Fg		
	[m²]	[m²]	[m]	[W/m ² K]	[W/m²K]	[W/mK]	[W/m ² K]	[-]		
INFISSO INTERNO	0.950	0.810	8.600	1.401	1.800	0.060	1.878	0.75		
INFISSO ESTERNO	0.950	0.810	8.600	5.751	1.800	0.000	3.933	0.75		

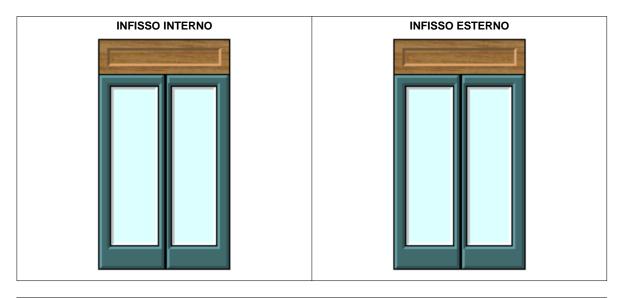
Fonte infisso interno - Uf: da Normativa; Ug: da Normativa

Fonte infisso esterno - Uf: da Normativa; Ug: da Normativa

COEFFICIENTE RIDUZIONE AREA TELAIO	0.4602	
RESISTENZA UNITARIA SUPERFICIALE INTERNA	0.130	m²K/W
RESISTENZA UNITARIA SUPERFICIALE ESTERNA	0.040	m²K/W
CONDUTTANZA UNITARIA SUPERFICIALE INTERNA	7.700	W/m²K
CONDUTTANZA UNITARIA SUPERFICIALE ESTERNA	25.000	W/m²K
RESISTENZA TERMICA TOTALE	0.797	m²K/W
TRASMITTANZA TOTALE	1.255	W/m²K
TRASMITTANZA VETRO TOTALE	1.114	W/m²K

Codice Struttura: WN.0002

Descrizione Struttura: Porta-finestra con telaio singolo in pvc a due ante, e vetrocamera con gas argon ad una


intercapedine.

Dimensioni: L = 1.50 m; H = 2.20 m

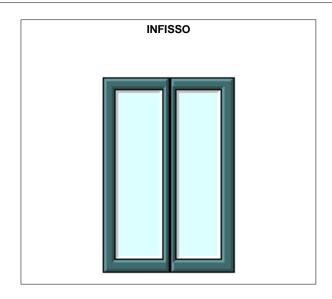
SERRAMENTO DOPPIO O COMBINATO								
DESCRIZIONE	Ag	Af	Lg	Ug	Uf	kl	Uw	Fg
	[m²]	[m²]	[m]	[W/m ² K]	[W/m²K]	[W/mK]	[W/m ² K]	[-]
INFISSO INTERNO	2.280	1.020	10.000	1.401	1.800	0.060	1.706	0.75
INFISSO ESTERNO	2.280	1.020	10.000	5.751	1.800	0.000	4.530	0.75

Fonte infisso interno - Uf: da Normativa; Ug: da Normativa

Fonte infisso esterno - Uf: da Normativa; Ug: da Normativa

COEFFICIENTE RIDUZIONE AREA TELAIO	0.3091	
RESISTENZA UNITARIA SUPERFICIALE INTERNA	0.130	m²K/W
RESISTENZA UNITARIA SUPERFICIALE ESTERNA	0.040	m²K/W
CONDUTTANZA UNITARIA SUPERFICIALE INTERNA	7.700	W/m²K
CONDUTTANZA UNITARIA SUPERFICIALE ESTERNA	25.000	W/m²K
RESISTENZA TERMICA TOTALE	0.817	m²K/W
TRASMITTANZA TOTALE	1.224	W/m²K
TRASMITTANZA VETRO TOTALE	1.114	W/m²K

Codice Struttura: WN.0003


Descrizione Struttura: Finestra con telaio singolo in pvc a due ante, e vetrocamera con gas argon ad una intercapedine

senza cassonetto

Dimensioni: L = 1.30 m; H = 1.00 m

SERRAMENTO SINGOLO								
DESCRIZIONE	Ag	Af	Lg	Ug	Uf	kl	Uw	Fg
	[m²]	[m²]	[m]	[W/m ² K]	[W/m ² K]	[W/mK]	[W/m ² K]	[-]
INFISSO	0.800	0.500	5.200	1.252	1.561	0.060	1.611	0.64

Fonte - Uf: da Normativa; Ug: da Normativa

COEFFICIENTE RIDUZIONE AREA TELAIO	0.3846
RESISTENZA UNITARIA SUPERFICIALE INTERNA	0.130 m ² K/W
RESISTENZA UNITARIA SUPERFICIALE ESTERNA	0.125 m ² K/W
CONDUTTANZA UNITARIA SUPERFICIALE INTERNA	7.700 W/m²K
CONDUTTANZA UNITARIA SUPERFICIALE ESTERNA	8.000 W/m²K
RESISTENZA TERMICA TOTALE	0.621 m ² K/W
TRASMITTANZA TOTALE	1.611 W/m²K
TRASMITTANZA VETRO TOTALE	1.252 W/m²K